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SUMMARY

In this paper a set of benchmark test cases for solid-body stress analysis and their solutions are presented. The
results are obtained using �nite-volume discretization and segregated solution procedure. Sets of progressively
�ner grids are used in a full multigrid algorithm based on V cycles and a correction scheme, ensuring high
computational e�ciency. Solutions obtained on systematically re�ned grids are used to estimate the solution
error, which was found to be less than 1 per cent on the �nest grids. In addition to graphical presentation
of the solutions, tabular data for some characteristic pro�les is included to make future comparisons easier.
Some details about the convergence properties of the method as well as an outline of the methodology are
also presented. It is hoped that the test problems and the solutions presented in this paper will be used in
the future for assessing the accuracy and e�ciency of new solution methods for solid-body stress analysis.
? 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

For the development of a new solution method or for the validation of an existing one, it is impor-
tant to have a set of test cases with accurate solutions for comparison purposes. Most test cases
available in literature lack systematic grid-dependence tests. Sometimes they were not possible,
since �nite element (FE) methods and block solvers were used, so that successive and uniform
grid re�nement would demand resources which were not available. The e�ciency of the algorithm
and its execution time can also discourage one from performing such tests.
The �nite-volume (FV) methods based on a segregated approach1; 2 are very e�cient in terms

of computer memory. Once these methods are equipped with a multigrid accelerator of outer
iterations,3 they become extremely e�cient regarding computing time as well. These two tech-
niques are described and used in this paper to obtain e�ciently accurate solutions suitable for
benchmarking.
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In Section 2 the mathematical model of solid-body equilibrium is presented. In Section 3 the
FV discretization procedure and an algorithm for an iterative solution of the resulting algebraic
equations are brie
y described. The results for selected cases are presented in Section 4.

2. GOVERNING EQUATIONS

The mathematical model of elastic solid-body equilibrium, consisting of the momentum equation
in integral form, Hooke’s law and boundary conditions, serves as a starting point for the FV
discretization method used in this study. In this case the static equilibrium of an arbitrary part of
solid body of volume V bounded by a surface S can be described by∫

S

{
�
[
grad u + (grad u)T

]
+ � div uI

} · ds + ∫
V
f dV = 0 (1)

where u is the displacement vector, � and � are Lame’s coe�cients, I the unit tensor, ds is the
outward-pointing surface-element vector and f is the resultant body force.
The problem is of an elliptic nature, so boundary conditions have to be speci�ed at all solution

domain boundaries. They can be of Dirichlet type (displacement boundary conditions):

u(r) = uB; r ∈ SD (2)

or of Neumann type (traction boundary conditions):

b(r) · n(r) = tB; r ∈ ST (3)

where r is the position vector, n the unit vector normal to the boundary surface and uB and tB
are the prescribed boundary displacement and surface traction, respectively. SD and ST are parts
of the boundary on which Dirichlet and Neumann boundary conditions apply, respectively.
In some cases symmetry conditions will be used to reduce the problem size.

3. SOLUTION METHODOLOGY

Full details of the FV technique employed to discretize equation (1) using displacement vector
components as unknowns are given in References 1 and 2 so only a brief outline will be presented
in this section.
In order to obtain discrete counterparts of equation (1), the solution domain is subdivided into

an arbitrary number of contiguous control volumes (CVs) or cells. The computational nodes are
placed at their centres, where the value of the displacement vector is stored. The control volume
is de�ned by the co-ordinates of its vertices and it can be of an arbitrary polyhedral shape. No
distinction is made between the co-ordinates of vertices before and after deformation, since the
displacements are assumed to be relatively small.
Assuming linear spatial distributions of the displacement vector and using the midpoint rule to

approximate surface and volume integrals, equation (1) is integrated over each CV to deliver an
algebraic equation in which displacement components at cell centres appear as unknowns. The
adopted approximations are second-order-accurate.
In order to simplify the solution procedure and to reduce the computer memory necessary for

solving the problem, the equations for displacement vector components are decoupled, resulting in
a system of linear algebraic equations of the form

AM = b (4)
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for each displacement vector component, where A is a symmetric sparse N × N matrix (N is the
total number of CVs) and the vector M contains values of displacement vector component ui at
N nodes. Matrix A involves only contributions from nearest-neighbour CVs. Contributions from
further CVs and from other displacement components are relegated to the right-hand side.
The iterative CGSTAB solver4 with incomplete Cholesky preconditioning,5 which retains the

sparsity of the original coe�cient matrix A, is used to solve system (4). Iterations within the
CGSTAB solver are called inner iterations. There is no need to solve system (4) to a tight tolerance
since vector b is only an approximation (based on the solution from the previous iteration).
Normally, reduction of residuals by an order of magnitude su�ces. This is usually achieved in 2
to 3 inner iterations.
After equation (4) is solved for all three displacement vector components, vector b is updated

using the new solution estimate, and the procedure is repeated until a converged solution is ob-
tained. This cycle represents an outer iteration of the solution algorithm.
The procedure is assumed converged when the sum of normalized absolute residuals for each

displacement vector component has fallen a prescribed number of orders of magnitude (typically
four). In order to promote stability of the solution method, underrelaxation is used; typical under-
relaxation factors are 0·9–0·95.
The solution procedure described above does not take advantage of the fact that the algebraic

system to be solved is actually an approximation to continuous equations, and therefore can be
similarly approximated by other much simpler algebraic systems. This fact can be exploited using
a multigrid (MG) method,6 which solves iteratively a system of discretized equations on a given
grid by interacting with a hierarchy of coarser grids. In the present study, progressively �ner grids
are obtained by systematically re�ning coarse-grid CVs (parents) into a number of �ner ones
(children), e.g. a hexahedral CV is subdivided into eight �ner hexahedra.
After several outer iterations are performed on a �ne grid, the intermediate solution vector M∗f

satis�es equation (4) up to the residual af :

AfM∗f = bf + af (5)

This equation can be rewritten in terms of corrections on the �ne grid, Tf = Mf −M∗f , where Mf
is the exact solution, as follows:

AfTf = af (6)

Equation (6) has the same structure as equation (4) and represents the transport of the corrections
Tf driven by the �eld of residuals on the �ne grid af . A similar system of algebraic equations to
the one given by equation (6) can be constructed on the coarse grid:

AcTc = bc + afc (7)

where Ac and bc are calculated on the coarse grid in the same way as their counterparts Af and bf
are constructed on the �ne grid and afc is the �ne-grid residual af restricted to the coarse grid. The
conservation principle requires that afc for each parent cell is obtained by summation of residuals
of all its children cells.
The correction Tc that satis�es equation (7) is linearly interpolated (prolongated) to the �ne grid

and added to the �ne-grid solution vector. Since the updated solution on the �ne grid will still not,
in general, be converged, it is necessary to repeat this two-level cycle until the full convergence
is achieved.
When the converged solution on the �ne grid is obtained, it is interpolated to the next �ner grid

to be used as an initial solution. This step is the main di�erence between MG and the so-called
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‘full multigrid’ (FMG) approach. The multigrid cycle is restarted, but now with two coarser grids.
Equation (7) has the same form as (4) (afc can be lumped into bc), and may itself be solved using
a coarser grid, so that the extension of the solution procedure from a two-grid to an arbitrary
multigrid scheme is straightforward.
In the present study, only two outer iterations were performed on the �ne grid, while on coarser

grids four iterations were performed during the restriction and three iterations during the prolonga-
tion phase. On the coarsest grid, 30 outer iterations were performed. For a �xed MG cycle these
parameters could be optimized for each individual case. However, in the present study the same
set was used in all cases.

4. RESULTS

The geometrical 
exibility and accuracy of the present method is demonstrated in earlier
publications.1;2;9 In this section very accurate solutions of three representative test cases, chosen
as suitable for benchmarking, are presented. The �rst case is two-dimensional with an analytical
solution, allowing direct evaluation of discretization error. The other two cases are three-dimensional
problems with relatively simple geometry, but still requiring �ne grids to obtain accurate solutions.
Since analytical solutions are not available, errors are estimated using Richardson extrapolation.
The discretization method is of second order, so the solution error on the �nest grid can be
estimated as

U = Mf − Mc
3

(8)

where Mf is the solution on the �nest and Mc on the next coarser grid.

4.1. Flat plate with a circular hole subjected to a uniform tension

A plate with a circular hole in its centre is loaded by a uniform tension in one direction; cf.
Figure 1. If the radius of the hole is small compared to plate dimensions, then an analytical
solution, obtained for an in�nitely large plate, describes accurately the stress distribution7;8

�xx = tx

[
1− a2

r2

(
3
2
cos 2�+ cos 4�

)
+
3
2
a4

r4
cos 4�

]

Figure 1. Plate with a central circular hole subjected to unidirectional tensile loads (a = 0·5m; b = 2m; tx = 10000 Pa,
E = 107 Pa; � = 0·3)
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Figure 2. First four numerical grids used for predictions

�yy = tx

[
−a

2

r2

(
1
2
cos 2�− cos 4�

)
− 3
2
a4

r4
cos 4�

]
(9)

�xy = tx

[
−a

2

r2

(
1
2
sin 2�+ sin 4�

)
+
3
2
a4

r4
sin 4�

]
where r =

√
x2 + y2 and � = tan−1(y=x) are the usual polar co-ordinates.

Taking into account the symmetry of the problem, the solution domain shown in Figure 1 is
used for numerical analysis. In order to eliminate the in
uence of the �nite-plate dimensions, the
traction calculated from the analytical solution is imposed at the boundaries BC and CD. At the
hole boundary AE, zero traction is speci�ed, and at boundaries AB and DE, symmetry boundary
conditions are applied.
The grid-dependence tests are performed by employing six systematically re�ned grids, four of

which are shown in Figure 2. The coarsest grid has 12 while the �nest has 12 288 CVs. It is obvious
that the �ner grids are too �ne in the region far from the hole, and by means of local grid re�nement
a solution of the same accuracy can be obtained with considerably less computational points.1

However, we look here for grid-independent solutions obtained by systematic grid re�nement
throughout the computational domain, such that Richardson extrapolation can be used for error
estimation without any additional assumptions.
The e�ect of grid re�nement is shown in Figure 3, where the average errors in stresses �xx; �yy

and �xy are plotted as a function of the characteristic grid size. The average is found by summing
the weighted absolute values of di�erences between the predicted stresses and those given by
equations (9). The weighting factors are calculated as the ratio of the CV volume and the total
volume of the computational domain. The error is normalized with the average value of the
corresponding stress in the computational domain. A characteristic grid size is obtained by dividing
the square root of the total area of the computational domain in the x–y plane by the total
number of control volumes. Figure 3 shows that the convergence towards the analytical solution
is asymptotically of second-order (the error is reducing by a factor of four as the grid is re�ned).
The errors on the �nest grid are lower than 0·4 per cent.
The use of the full-multigrid acceleration technique, as can be seen from Figure 4 and Table I,

leads to an almost ideal convergence behaviour, since the asymptotic convergence rate is almost
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Figure 3. Solution error as a function of the grid size for the plate with circular hole problem (straight lines show ideal
slope for a second-order scheme)

Figure 4. Convergence history of the solution method for the plate with circular hole

Table I. Number of �ne grid iterations and
computing time necessary to obtain con-
verged results for plate with circular hole

problem

Grid no. No. CV Iter. CPU (s)

1 12 43 0·12
2 48 22 0·63
3 192 18 1·78
4 768 16 6·37
5 3072 14 22·87
6 12288 12 78·84
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Figure 5. T-pro�le subjected to unidirectional tensile loads

the same on each grid. Actually, the total number of �ne grid iterations reduces as the grid gets
�ner, due to the e�ect of using a good initial �eld provided by the full multigrid.
This test case is suitable for assessing the accuracy and the order of the solution method, since

the discretization error can be exactly calculated. Note that two methods of the same order may,
on a given grid, have discretization errors which di�er by as much as an order of magnitude; the
order of the discretization only de�nes the rate of error reduction with grid re�nement and is not
a su�cient measure of the method accuracy.

4.2. A narrow member with a T cross-section subjected to a uniform tension

A narrow member with a T cross-section is a common element in engineering and at the same
time it has a simple geometry which is easy to de�ne. Holes of radius R are usually drilled
at the otherwise sharp corners in order to reduce stress concentrations. Due to the symmetry of
the problem only a quarter of the member has been considered. The solution domain showing
dimensions and the prescribed boundary conditions is depicted in Figure 5. The 
ange is �xed at
its two ends while the uniformly distributed traction force acts along the bottom part of the web.
The calculation is performed on four successively re�ned grids, the coarsest having 624 and the

�nest 319 488 CVs. These two grids are shown in Figure 6 together with the perspective view on
the second grid from which one can see the grid distribution in the z direction.
The distributions of �xx and �yy stresses in the z = 0 plane obtained on the �nest grid are shown

in Figure 7, where one can see the large stress concentration around the hole. Apart from regions
around the hole and the �xed end of the member, the distribution of stresses is fairly smooth.
In order to simplify the presentation of the results, pro�les of the e�ective stress, which combines

all six independent stress components,

�e� =
√

1
2

[
(�xx − �yy)2 + (�yy − �zz)2 + (�zz − �xx)2

]
+ 3(�2xy + �2yz + �2zx) (10)
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Figure 6. Coarsest and �nest numerical grid (top) and perspective view on the second grid (bottom)

Figure 7. Distribution of �xx (left) and �yy (right) stresses in plane z = 0
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Figure 8. Distribution of e�ective stress at r = 1·5R; z = 0 in case of T member

Figure 9. Distribution of e�ective stress (top) and u displacement component (bottom) along x = 0; z = 0 for the case
of T member
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Figure 10. Distribution of e�ective stress (top) and v displacement component (bottom) along y = 0; z = 0 for the case
of T member

are chosen for presentation. The pro�le along r = 1·5R; z = 0 is shown in Figure 8. The meanings
of r and � co-ordinates are explained in Figure 5. Results for all four grids are shown, indicating
rapid convergence towards a grid-independent solution. The pro�les are almost symmetric with
respect to the location � = 135◦, where the maximum value of the e�ective stress occurs. The
maximum is not very much pronounced but is rather 
at, spanning over almost 60◦. The minimum
values are at the non-loaded boundaries, corresponding to � = 0◦ and � = 270◦. The key points
along the pro�le on the �nest grid are given in the table on the right-hand side of Figure 8. The
maximum error in the solution on the �nest grid, estimated using Richardson extrapolation, is also
indicated.
The pro�les of the e�ective stress and u and v displacement components in the z = 0 plane

along directions x = 0 and y = 0, respectively, are shown in Figures 9 and 10. The e�ective stress
rises sharply towards the edge of the circular hole indicating large stress concentration there. The
pro�le in plane x = 0 has a local minimum at y = 6·4R. The u displacement component in this
plane changes sign at y = 4·7R, indicating that the upper part of the 
ange is stretched and the
lower one compressed in the x direction. The variation is almost linear between the minimum
umin = −6 ·59×10−7 m and the maximum umax = 1 ·028×10−6 m at the hole edge and upper
boundary, respectively.
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Figure 11. Numerical grids used for prediction of a thick plate bending

The v displacement component along y = 0; z = 0 varies non-linearly, as shown in Figure 10.
Here a non-monotonic convergence towards a grid-independent solution is observed. There is a
small increase in v after the �rst re�nement, and thereafter the values are reducing. Note that the
scale has been largely stretched to show this behaviour.
The maximum error on the �nest grid for all quantities is estimated to be less than 0·5 per cent.

Average errors in pro�les presented in Figures 8, 9 and 10 are of the order of 0·1 per cent. These
results are therefore suitable for testing the accuracy of solution methods.

4.3. Bending of a thick plate

A thick elliptic plate with a centred elliptic hole, fully clamped at the outside edge
and loaded by a constant pressure of 1MPa at the upper surface, was proposed as a test case by
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Figure 12. Distribution of �xx; �yy; �xz and �yz in plane z = 0·3m (The legend in the upper part refers to the distribution
of �xx and �yy , and in the lower part to the distribution of �xz and �yz)

NAFEMS (National Agency for Finite Element Methods and Structures). The out-of-plate bending
is the key feature of interest. Due to a double symmetry, only a quarter of the plate is analysed.
Calculations were performed on �ve systematically re�ned grids ranging between 72 and 294 912

CVs. The grids are shown in Figure 11 together with the co-ordinate system adopted, with respect
to which the results are presented. The distribution of stress tensor components in plane z =0·3m
are plotted in Figure 12. The �zz component in this plane is almost constant (approximately
−0·55MPa).
The symmetry between �xx and �yy, and �xz and �yz stress components across planes x = y

and x = −y, which would be expected in the case of a circular plate with a circular hole, can
be noticed in a distorted form. The largest distortion exists in the region where the radius of
curvature of the inner ellipse is smallest. The stress components �xz and �yz are almost one order
of magnitude larger than other components and in this plane they dominate the distribution of the
e�ective stress.
Although in this case there is no local stress concentration as in the previous one, the stresses

show strong variation in the whole domain and the variation is not monotonic.
In Figure 13 the distribution of the local stress component �ss along the local co-ordinate s is

presented for di�erent grids. The local co-ordinate s runs along the upper inner edge of the plate
in the direction shown in Figure 11. This pro�le is the one proposed by NAFEMS for testing.
It should be noted that there are no computational points along such edges in �nite volume
discretization, so the values of the stress tensor components used to calculate �ss are obtained by
linearly extrapolating their values from the control volumes adjacent to the edge. In the case of
a circular plate with a circular hole, the value of �ss would be constant, so the distortion of the
pro�le that can be observed in Figure 13 is due to the change of curvature radius.
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Figure 13. Distribution of local stress �ss along local co-ordinate s for the elliptic plate

Figure 14. Distribution of e�ective stress (top) and the magnitude of displacement component (bottom) in x–y plane
along r = 2·1m; z = 0·3m for the elliptic plate
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Figure 15. Distribution of e�ective stress (top) and displacement components u (middle) and v (bottom) along x = y;
z = 0·3m for the elliptic plate

The results show convergence towards the grid-independent solution as the grid is re�ned;
however, the convergence is not monotonic everywhere. Since �ve grids were used, the di�erence
between solutions on the two �nest grids still allows for a reliable estimation of discretization
errors. The average errors were in this case, as in the previous one, of the order of 0·1 per cent.
The maximum error occurs in the region of the local minimum of �ss and is less than 0·4 per cent.
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Figure 16. Convergence properties for the ellliptic plate problem

Table II. Memory and CPU times necessary to obtain converged solution on all grid levels using
double precision arithmetics on an IBM RISC System 6000/530 workstation

Sol. Tol.=10−5 Sol. Tol.=10−3

No. deg. No. grid Memory Fine grid CPU Fine grid CPU
Case No. CVs freedom levels (MB) Iter. (min) Iter. (min)

1 12 288 24 576 6 8·85 12 1·3 6 0·7
2 319 488 958 464 4 161·66 66 106·9 32 51·4
3 294 912 884 736 5 148·19 27 38·1 16 22·6

The distribution of the e�ective stress �ss and displacement components u and v along r =√
x2 + y2 = 2 ·1m; z = 0 ·3m is shown in Figure 14. One can observe a steady increase of

the e�ective stress with the increasing angle �. At approximately � = 15◦ the pro�le has an
in
ection point. The pro�le of the displacement in the x–y plane has a well-pronounced maximum
at � = 25·05◦ and its value is 5·0918×10−7 m.
Finally, the pro�les of the e�ective stress and displacement component u and v along x = y;

z = 0·3m are presented in Figure 15. The e�ective stress pro�le has a very sharp minimum at
r = 1·574m and maximum at r = 2·745m. These extreme values of the e�ective stress pro�le are
mainly determined by the distribution of �xz and �yz stress components (see Figure 12).
In contrast to the result expected for a circular plate, where the pro�les of u and v displacement

components are the same along the speci�ed direction, here a large di�erence can be observed
between them. The maximum absolute value of the v displacement component along the pro�le
is almost an order of magnitude larger than the maximum value of u. At the same time, the u
displacement pro�le exhibits two extremes, one at r = 1·523m and the other at r = 2·891m. Both
displacement components change sign, u at r = 2·760m and v at 2·772m.
In all of the above pro�les, convergence towards a grid-independent solution, although non-

monotonic over the range of grids used, is clearly seen. The error in the solution on the �nest grid
is on average about 0·1 per cent. Maximum errors are indicated for each pro�le in Figures 13–15.
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Figure 16 shows the asymptotic convergence rate of the full multigrid solution method for the
set of numerical grids used in this case. The number of �ne grid iterations is almost constant and
the CPU time is proportional to the number of computational points.

5. CONCLUSIONS

Three benchmark cases were proposed for assessing the accuracy and e�ciency of numerical
methods for structural analysis. The paper provides accurate, grid-independent solutions in the
form of graphs as well as tables containing the values at key points on the pro�les.
The solutions were obtained by using a succession of uniformly re�ned grids and the discretiza-

tion errors were estimated using Richardson extrapolation. For all results presented, the maximum
estimated error is found to be less than 0·7 per cent, while the average error is about 0·1 per cent.
The convergence tolerance for all cases presented was 10−5, which corresponds to the accuracy

to within four to �ve signi�cant �gures. However, for most practical applications discretization
errors of the order of 1 per cent are acceptable and the convergence tolerance of 10−3 would
su�ce; the number of required iterations and computing time are much lower in this case.
The use of multigrid acceleration resulted in respectable computing times, while segregated

solution algorithm imposed very small memory demands. Memory and CPU times necessary to
perform double-precision calculations on an IBM RISC System 6000/530 workstation, for all three
test cases, are given in Table II.
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